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Social interactions are fundamental for human behavior, but the
quantification of their neural underpinnings remains challenging.
Here, we used hyperscanning functional MRI (fMRI) to study infor-
mation flow between brains of human dyads during real-time
social interaction in a joint attention paradigm. In a hardware setup
enabling immersive audiovisual interaction of subjects in linked
fMRI scanners, we characterize cross-brain connectivity compo-
nents that are unique to interacting individuals, identifying infor-
mation flow between the sender’s and receiver’s temporoparietal
junction. We replicate these findings in an independent sample
and validate our methods by demonstrating that cross-brain con-
nectivity relates to a key real-world measure of social behavior.
Together, our findings support a central role of human-specific
cortical areas in the brain dynamics of dyadic interactions and
provide an approach for the noninvasive examination of the neu-
ral basis of healthy and disturbed human social behavior with
minimal a priori assumptions.

fMRI | hyperscanning | joint attention

Human social interactions have likely shaped brain evolution
and are critical for development, health, and society. De-

fining their neural underpinnings is a key goal of social neuro-
science. Interacting dyads, the simplest and fundamental form of
human interaction, have been examined with behavioral setups
that used real movement interactions during communication in
real time as a proxy (1–4), providing mathematical models rep-
resenting human interaction, goal sharing, mutual engagement,
and coordination. To identify the neural systems supporting these
behaviors, neuroimaging would be the tool of choice, but studying
dyadic interactions with this method is both experimentally and
analytically challenging. Consequently, the neural processes under-
lying human social interactions remain incompletely understood.
Experimentally, studying dyads with neuroimaging technology

that allows only one participant per scanner provides challenges
that have been addressed in the literature in one of two ways.
First, the audiovisual experiences of human social contact have
been simulated using stimuli such as photographs, recorded vid-
eos, or computerized avatars in the absence of human interaction
(5–7), or, recently, immersive audiovisual linkups have been used
with one of the two participants being scanned (8, 9). Secondly,
pioneering neuroimaging experiments have coupled two scanner
sites over the Internet, a setup called hyperscanning, enabling
subjects to observe higher-level behavioral responses such as
choices made to accept or reject an offer in real time while in the
scanners (10, 11). In the current study, we aimed to combine the
advantages of these experimental approaches by enabling two
humans to see (and possibly hear) each other in a hyperscanning
framework, enabling an immersive social interaction while both
participant’s brains are imaged. To do so, we implemented a setup
with delay-free data transmission and precisely synchronized data

acquisition, in addition to a live video stream provided between
scanner sites during the entire session (Fig. 1A). While real-time
video transmission is not an indispensable requirement for the study
of all forms of social interaction, it is a naturalistic presentation
method for visual social stimuli in the scanner, and likely helpful for
the study of interactions involving changes in eye gaze and facial
expressions, although the advantages of the precise temporal syn-
chronization are partially mitigated by the low temporal resolution
of the blood oxygen level-dependent (BOLD) response and the
sampling frequency of functional MRI (fMRI) experiments.
Analytically, extracting and testing for information flow in the

resulting joint neuroimaging data are not straightforward. In this
paper, we describe a general analysis framework for this problem
that makes only minimal a priori assumptions. Importantly, using
permutation testing, we also aim to address the open question of
whether there is anything neurally specific or even unique about
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human dyadic interaction, compared with a situation in which no
real-time information is exchanged.
In the current paper, we study joint attention (JA), a basic yet

fundamental mechanism of social interaction that is used by hu-
mans to coordinate and communicate intentions and information
as well as guiding others’ attention in a nonverbal way, especially
through eye gaze (12). JA is of considerable interest both for
cognitive and clinical neuroscience because it arises early in de-
velopment, preceding and shaping the emergence of symbolic
communication and higher-order social functions such as repre-
sentational theory of mind (13, 14). Disturbances of JA in de-
velopmental disorders with prominent social disturbances such
as autism and attention deficit hyperactivity disorder, but also
schizophrenia, have been identified (see, e.g., refs. 13 and 15).
To investigate JA, we used a paradigm where information on

a target location is given to one subject (sender of information)
only, but both subjects (sender and receiver) must respond cor-
rectly by indicating the target location on a button response
device. Thus, information needs to be transferred from one subject
to another nonverbally while fMRI data are acquired, resulting
in flow of information between two interacting brain systems
(interaction phase, INT). For determination of interaction-based
aspects of the fMRI data, control phases without interaction
were added to the task protocol (NoINT). We studied a dis-
covery sample to identify the main neural parameters of infor-
mation flow (n = 26) and, for confirmation, a larger independent
replication sample (n = 50). Combined, these data were used to
validate the approach and relate the resulting parameters to
socially relevant psychometric measures. Based on the previous
literature on neuroimaging in JA, we expected that we would see
information flow involving the temporoparietal junction and
medial prefrontal cortex. However, to keep methodological as-
sumptions in this new field minimal, we decided to not include
this as an a priori hypothesis into our analysis.

Results
Analysis Summary. To characterize information flow between inter-
acting brains, we used a data-driven approach with minimal as-
sumptions. In brief, we extracted components (spatiotemporal
summaries of brain activity) from all participants’ data (step A),
selected brain components active during interaction in individual

brains (step B), estimated the information flow between components
in interacting pairs (step C), and used randomization to demonstrate
that coupling is unique to interacting pairs (step D) (Fig. 1B). A
detailed description of all analysis steps is provided in Methods.

Discovery Study. In a first analysis step requiring minimal prior
assumptions on data characteristics, we applied a multivariate
group independent component analysis (ICA) (16–19) to the
data of 26 healthy subjects (13 pairs) in step A. This data-driven
approach identified 16 maximally independent sources (compo-
nents) that, together, account for the observed fMRI data of all
subjects (Fig. S1). Of these, one noise component (defined as
predominantly extracerebral signal) was removed.
In step B, components relevant for social interaction (component

of interest, COI) were identified. COIs should, by definition, be
significantly more active while subjects are interacting. Thus, we
computed temporal association indices for each component and
task phase of interaction, as well as phases of no interaction
(multiple regression analysis); i.e., a parameter for each subject, for
a given component, within each task block, and to each phase of the
task, reflecting the overall temporal association of the component
with the respective task phase. Subsequently, all components that
did not exhibit a significantly higher association with INT were
excluded. After this step, six components were identified as COIs
(repeated measures ANOVA; all F > 6.9, P < 0.02, Table S1).
In step C, to map the information flow from one brain to

another, we computed cross-correlations between COI for each
COI pair (i.e., each COI extracted from sender with each COI
extracted from receiver). Computations included estimations of
the optimal time shift (lag) (11, 20, 21), indicative of the transfer
time between neural systems.
Finally, in step D, to investigate whether hyperscanning data

captured the flow of information between interacting subjects, we
tested whether the coupling between COI systems was significantly
different from that in pairs that performed the identical task
protocol, but were not actually interacting with each other. For
this, we recombined data from these real pairs to form nonpairs
(e.g., sender pair A/receiver pair B), and repeated step C analysis.
Neural coupling indices for each lag of real pairs and nonpairs
were then compared [permutation-based tests, corrected for mul-
tiple comparisons using false discovery rate (FDR)]. This revealed

Fig. 1. Hardware environment and analysis routine for fMRI hyperscanning. (A) Illustration of the hyperscanning setup as implemented for the present
studies. (B) Schematic overview of the analysis routine for the examination of information flow between interacting human brain systems in hyperscanned
fMRI data. Letters correspond to the numbering of in-text analysis steps.
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that two COI pairs showed significantly higher neural coupling in
real pairs relative to nonpairs within a time window of 0–1.55 s
(PFDR < 0.04; Table S2).
Notably, both identified pairs had the same neural system in

the sender, a component spatially comprising the right temporo-
parietal junction (rTPJ, component 11, Fig. 2A). Neural coupling
of the sender’s rTPJ with the receiver’s rTPJ was found to be
unique to real pairs in the discovery study data; additionally, neural
coupling was found between the sender’s rTPJ and a COI spa-
tially highly associated with prefrontal regions, medial prefrontal
cortex (mPFC), and orbitofrontal cortex, respectively (compo-
nent 13, Fig. S1).

Replication Study. To gain further confidence in the initial find-
ings, the study was repeated in a larger, independent sample of
50 healthy subjects (25 pairs), and the analysis routine was ap-
plied as described above. Step A group ICA (GICA) identified
16 maximally independent components from the concatenated
data, the same number as estimated for the discovery study data
(Fig. S2). Within step B, six components exhibited relevant
temporal properties and were included as COI (positive associ-
ation with INT that is significantly higher than the association
with NoINT, all F > 8.6, P < 0.002; Table S1).
Following results derived from the discovery data, COIs were

screened for spatial consistency with component 11 of the discovery
data; i.e., the COI covering rTPJ was identified (Table S3 and
Fig. 2B). Neural coupling indices were computed as specified in
step C between the sender’s rTPJ component and all identified
COIs. Lastly, nonpair data were created by permutation of real
pairs (step D). This confirmed the initially found synchronization of
the sender’s and receiver’s rTPJ as unique to interacting subjects
(PFDR = 0.001, Table S4). Coupling between the sender’s rTPJ
and prefrontal regions was not confirmed in the replication data.

Relationship to Social Expertise. Finally, to examine evidence for
the behavioral relevance of our findings, we tested whether cou-
pling indices are associated with parameters of the subject’s social
functioning, as indexed by the average complexity of a pair’s social
networks. The self-report questionnaire social network index
(SNI) (22) is a repeatedly used measure describing the complexity
and size of the social network a subject is embedded in, and has
been found to be related to neural markers such as the volume
and function of socially relevant brain regions (23–26). Indeed, the
coupling index proved to be significantly positively associated with
the mean social network complexity of real pairs (repeated mea-
sures ANOVA; F = 5.0, P = 0.03). Thus, dyads living in more-
complex social networks (i.e., pairs having regular contact with
individuals from a greater variety of social groups, such as family,

coworkers, sports peers, religious peers) displayed stronger
between-pair neural coupling during JA interaction.

Discussion
In the present work, we aimed to develop a neuroimaging ap-
proach enabling us to identify neural systems in interacting human
dyads with minimal a priori assumptions. A coupled neural system
centered at a key region for social interaction, rTPJ, was identified
in this process and confirmed in a replication experiment.
TPJ is a supramodal association area integrating input from

thalamus, visual, auditory, somaesthetic, and limbic areas of the
cortex. Specifically, the rTPJ has been implicated in two sets of
functions, both of which are relevant to JA: reorienting of atten-
tion and social cognitive functions ranging from the processing
of socially relevant motion and cues, to inferring social intentions,
to a representational theory of mind (27–30). Importantly, both
functional domains not only depend on rTPJ but are also de-
velopmental prerequisites of JA and therefore a functional basis
of higher-order social cognitive functions. Recently, a functional
segmentation of rTPJ was suggested, with anterior rTPJ being
relevant both for attention shifting and processing of social in-
formation, while posterior rTPJ is concerned with theory of mind
(31). The full structure would then serve as an integrating core for
mentalizing, and judging/planning of social behavior (31–33). The
ICA components observed as coupled during social interaction in
our study cover both anterior and posterior rTPJ. Consequently,
we consider it plausible that, in line with the integration of social
information and the central role in forming social behavior, rTPJ
function is the basis of unique neural synchrony in interacting
subjects. In agreement with this, previous experiments invoking JA
with one participant being scanned have shown right-sided acti-
vation of TPJ or posterior superior temporal sulcus (8, 9, 34, 35).
The social cognitive relevance of the observed cross-brain cou-

pling originating from rTPJ is further supported by our finding
that, in the discovery sample, the second significantly coupled dyad
linked rTPJ to prefrontal cortex, especially mPFC. This latter brain
region has been proposed, together with rTPJ, as supporting
uniquely human social cognition (36). Specifically, dorsal mPFC is
implicated in the uniquely human representation of triadic relations
between two minds and an object, supporting JA, and has been
observed in single-participant JA experiments (37), and in a dual-
participant JA experiment with one subject in the scanner (9, 35).
However, our observation was not replicated in the second sample
we studied and must therefore be considered preliminary until
followed up by larger studies using a hyperscanning framework.
Significant differences in neural coupling were observable

within a delay time bin between the neural signals of 0 s to ∼3 s,
which is a plausible time frame necessary for the information to
be transferred and processed between brains. In two independent
samples, we showed that temporal coupling was significantly
linked to interaction of a pair: Neither synchronized task per-
formance that did not require interaction (NoINT phases) nor
interaction with any partner but the real one (nonpairs) produced
similar synchronized brain activity. Nevertheless, the time resolu-
tion of fMRI, which is limited by the temporal course of the
BOLD response and the ability to sample it in imaging, likely
captures the underlying dynamics of the pair interaction only in-
completely; we speculate that coupling strength in the dyad may wax
and wane across the time course of a trial. In a supplementary
analysis, we examined whether differences in coupling of interacting
pairs extended into later time periods and did indeed find signifi-
cant increases also in later time periods (SI Text, Increase of Neural
Coupling over Time), which argues that periods of synchronized
activity persist and/or recur later in the dyadic interaction.
Because the goal of this paper was to identify neural coupling

measures in direct social interaction, we hypothesized that these
signatures would be related to real-world social functioning.
Based on previous studies, we chose the complexity of the social

Fig. 2. ICA components showing neural coupling only in interacting sub-
jects typically cover the right TPJ. (A) Component 11 (discovery study).
(B) Component 5 (replication study). See Figs. S1 and S2 for display of both
full sets of components.
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environment (22), which had been found to be related to
connectivity strength within social brain networks in humans as
well as to the size of a main subregion, the amygdala (23, 26).
Indeed, we found a relationship in the expected direction, with
higher coupling related to increasing real-world social complex-
ity. Interestingly, neuroimaging data in macaques have shown
that activity of superior temporal sulcus, a potentially homolo-
gous area to TPJ, was linked to social network size, pointing to
an evolutionarily conserved or elaborated mechanism (38).
Our study has several limitations. First, because our focus was

on identifying information flow between interacting dyads with
as few assumptions as possible, but stringent statistical testing,
the approach taken in this paper is conservative. It is conceivable
that additional interacting systems can be identified as two-
person neuroscience advances and more knowledge about the
relevant systems can be assumed a priori. Second, as stated, the
time resolution of fMRI is likely not able to characterize in-
teraction events fully, calling for future methodological advances
in joint EEG−fMRI hyperscanning. Third, because we chose JA
as a simple yet fundamental mechanism of social interaction, this
led to results in behavioral data at-ceiling, which could therefore
not be associated with the magnitude of neural coupling. More
complex tasks should, in the future, permit a direct study of the
relationship between on-task performance and coupling. Fourth,
future studies may consider the use of alternative control condi-
tions. Although our approach aimed for a comparable perceptual
stimulation, other control scenarios may include the extraction of
directional information from a nonsocial object (e.g., an arrow
in the center of the display indicating where to look) or the pre-
sentation of a recorded (noninteracting) video of a partner. Fi-
nally, our replication sample consisted only of female dyads;
gender effects in coupling should be studied in the future.
In conclusion, we implemented a hyperscanning environment to

study the neural mechanisms of dyadic social interaction in hu-
mans, overcoming some prior research constraints. We developed
a generally applicable analysis method with minimal a priori as-
sumptions, identified neural coupling that is unique to interacting
pairs and specific involvement of rTPJ, replicated our findings,
and validated them by associating the derived parameters of brain
interaction with a psychometric measure of social expertise. We
hope that the outlined experimental approach will be useful to
further study the neurobiological underpinnings of human dyadic
social interaction, a core interest of both basic social and clinical
neuroscience. Most common psychiatric disorders impair social
behavior, and, conversely, social interactions in psychotherapy are
a mainstay of treatment. Current knowledge of the underlying
biological mechanisms is minimal, and can be advanced by two-
person neuroscience approaches such as the one described here.
Subsequent studies could examine the psychiatric and biological

involvement of neural coupling. In addition to complex inter-
action, clinical samples with known impairment in social behavior
or neurobiological interventions such as transcranial magnetic
stimulation should be considered to evaluate sensitivity and spec-
ificity of this parameter and rTPJ function. Finally, the ability
to identify linked systems across brains will inform neuroscience
research on phenomena such as social hierarchy, defeat, trust,
attraction, and other key questions in which the examination of
natural immersive human interactions is a significant methodo-
logical advancement.

Methods
Hyperscanning Environment. To create an immersive hyperscanning environ-
ment, two identical 3 Tesla MRI scanners, located ∼100 m apart, were directly
connected via optical fibers (duplex fiber, straight tip fiber optic connector,
62.5 μm/125 μm; outlined by Fig. 1A). Identical scanners are relevant, because
signal differences between varying platforms may overshadow meaningful
effects of task or social interaction in fMRI data (a brief discussion of rec-
ommendations is given below). Also, using direct connections of fiber optics

instead of Ethernet and Internet protocols enabled the exchange of signals
between scanner sites in real time (data transmission delay < 1.5 μs), which is
essential for scanner and fMRI hardware synchronization and optimal quality
of the live video transmission. Fiber optics were used for transmission of scan
trigger signals, video streams, and behavioral data. For fMRI synchronization,
the optical trigger signal from one scanner was sent to the other, where it
initiated fMRI image acquisition and also served to synchronize the task-re-
lated software with data acquisition (approximately every 10 s). For recording
of high-quality facial visual stimuli, which is essential for a naturalistic social
interaction experience, a mirror box was custommade byMRC Systems GmbH
to fit a 12-channel-MR head coil and hold two MR-compatible cameras along
with the respective light sources. IR light was chosen to avoid distracting
visible illumination in the subjects’ sight. One camera, used in the study
reported here, captured the entire subject’s face image in a focal width of
3.6 mm, an image sensor format of 1/3 inch, and recording at a frame rate of
50 Hz (model MR_CAM Hyper-Scanning); a second camera was mounted,
suitable to provide eye-tracking images in future studies. The cameras were
placed behind a 45° tilted one-way mirror, thus unseen by the subject. The
live image of the camera was transmitted to the other scan site, where it was
merged with the stimulus display, a 40-inch liquid-crystal display at the head
end of the MRI scanner. Audio contact was not provided in this study. The
scan protocol was identical at both sites.

Hardware Setup for Hyperscanning Studies.
Connection of scanner sites. Use of Internet-based Transmission Control Protocol/
Internet Protocol for the connection of scanner sites (10), while enabling long-
distance connection of research laboratories, brings about an unpredictable
amount of delay, depending on the location and number (hop count) of router/
gateways that data are transferred across before reaching the actual destination
(round trip times of up to 300 ms, depending on server location). However, for
signal bursts to be interpreted correctly by our stimulation devices (Presentation:
Neurobehavioral Systems; see www.neurobs.com/index_html), temporal jitter
due to the round trip time of transmitted data packages cannot be larger than
40 ms. Thus, to create an environment that enables precise synchronization of
scanners and stimulus presentations, we chose a direct connection of scanner
sites via fiber optics. Although the neural readout (BOLD response) evolves over
seconds, as do many forms of social interaction, some aspects of social com-
munication, such as eye gaze and facial expressions, operate on a much shorter
time scale. This makes the lag-free video and response transmission of the
hyperscanning environment particularly suitable for the study of these (but not
all) forms of human interaction, even though the advantage of the precise
synchronization is partially mitigated by the time scales of the BOLD response
and the sampling frequency of whole-brain fMRI acquisitions.
Identical MRI scanner types. To eliminate important sources of noise, we
equipped our scanner sites with fully identical hardware. Otherwise, between-
scanner variance from nonidentical sites is induced in the data and is confounded
with the effect of interest in hyperscanning studies; the same likely applies for
different scanner types. For example, Takao et al. (39) reported significant differ-
ences in brain volume measured by identical scanner sites, and other studies sug-
gest rather large differences in data acquired on different scanner vendors and/or
field strengths that should be considered in the design of multisite studies (40, 41).
For functional data, differences of signal detection at 1.5 T versus 3 T have been
reported (42), and Friedman et al. (43) found poor reliability of multisite (field
strength and vendor) data acquisition, proposing multiple factors to improve
comparability, e.g., selection of large regions of interest or averaging multiple
runs, both not practicable solutions for hyperscanning. Although these studies
do not support a final conclusion, they point to a plausible bias of hyperscanning
data that increases with differences in the acquisition hardware. We thus rec-
ommend keeping setups as similar as possible, although the minimization of
interscanner variability may bias the approach toward the idiosyncracies of a spe-
cific scanner. This implies that the suggested homogeneity of setups may involve
a trade-off between reduction of confounds and generalizability of results.

Subjects. Two independent samples of right-handed healthy volunteers were
successively recruited from the population of the city ofMannheim, Germany.
Thirty subjects participated in the discovery study, and, following its com-
pletion, a second sample of 56 healthy volunteers was independently re-
cruited for replication. All participants providedwritten informed consent for
a protocol approved by the Ethics Committee of the University of Heidelberg
and were screened before inclusion for the absence of a lifetime history of
psychiatric or neurological illness, pregnancy, a history of head trauma, and
current alcohol or drug abuse. Subjects were randomly assigned to same-sex
dyadic pairs and scanners. Five pairs (10 subjects) had to be excluded after data
inspection (one due to incomplete fMRI data of one subject; two because of
excessive head movement during data acquisition; two due to insufficient task

5210 | www.pnas.org/cgi/doi/10.1073/pnas.1421831112 Bilek et al.
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performance, i.e., not indicating the targetpositionbyeye gaze). A sampleof 26
subjects formed the discovery group (10 males, mean age = 24.5 ± 4.6 y, mean
education = 12.8 ± 1.2 y), and 50 subjects were included in the replication
sample (all female, mean age = 23.4 ± 3.3 y, mean education = 12.6 ± 1.3 y).

Task. The task combined phases of interaction (INT) between the subjects and
phases of individual performance (NoINT), as well as feedback. During INT,
subjects had to press a target button on anMR-compatible response device that
corresponded to the location of target shapes on the stimulus presentation
screen (i.e., left, right, bottom, or top). The target shape (square) was shown
randomly at one of the four positions across trials, and distractor shapes (e.g.,
parallelogram, rectangle) were assigned to the remaining positions (see Fig. S3A
for examples). A successful trial required both subjects to press the same target
button, although the target shape was presented to one subject (i.e., the
“sender” of information) only. Stimuli in the shape of a plus sign (equal in size
and similar in complexity to the target and distractor shapes) were shown to
the other subject (i.e., the “receiver” of information, Fig. S3B). The receiver
was therefore dependent on the information given by the sender about the
target position. To gain this information, receivers were instructed to locate the
target by following the sender’s eye gaze; the sender, in return, marked
the target location by a gaze shift in the corresponding direction. Hence, a
successful trial required cooperation and information flow between sender
and receiver. To isolate the interaction-based aspects of the fMRI data, phases
of comparable perceptual stimulation without interaction were added to the
task protocol. During NoINT, the same stimulus configuration presented to the
sender in the interaction condition was presented to both subjects (one target,
three distractors, fixed positions; same target position, random distractor
shapes), so that no cooperation was necessary to successfully complete the trial.
Subjects were instructed to solve the NoINT condition independent of their
partner, and senders were not instructed to perform voluntary eye movement.

The full task included two scan blocks of 40 trials (alternating phases 40 × INT,
40 × NoINT; 5 s each), followed by a performance feedback (3 s). Task roles
(sender/receiver) were switched after the first half of trials, so that each subject
performed both task roles across the measurement either in the first or the
second half (block A or block B). Including a break between blocks for instruction
of subjects for role switch, buffering scans for device synchronization, and a
temporal jitter between trials to vary stimulus presentation onsets, total task time
summarized to 598 s in the discovery study and 645 s in the replication study, for
which an extended jittering delay was used. Live video transmission was provided
continuously over the entire task. The video image was centered on screen, and
task stimuli were arranged at the respective positions around the video image.

Data Acquisition and Preprocessing. Data were acquired on both scanners,
applying parallel imaging to improve temporal resolution (TR) of data, and
with the following parameters: TR = 1550 ms, TE = 30 ms, FOV = 192 mm2, 28
slices, 4-mm thickness, 1-mm gap, flip angle 73°, 393/390 volumes (discovery
study) or 423/420 volumes (replication study). For the following analysis
steps, a conventional preprocessing routine was applied using Statistical
Parametric Mapping software (SPM8, www.fil.ion.ucl.ac.uk/spm/software/
spm8/) in MATLAB (version 2011b, www.mathworks.com/products/matlab/).
Data were realigned to mean image, slice time corrected, normalized to
standard stereotactic space (as defined by the Montreal Neurological In-
stitute), and smoothed using a Gaussian kernel filter with 8-mm FWHM.

Analysis Step A: ICA. ICA is a data-driven blind source separation approach,
which extracts the underlying, maximally independent sources (components)
from a multivariate data set. GICA was conducted using the GIFT toolbox for
MATLAB (GIFT version 2.0e, mialab.mrn.org/software/gift/). Here, a spatial
ICA is performed [INFOMAX algorithm (44)], while subject data are tempo-
rally concatenated in one aggregate data matrix X to obtain grouped spatial
maps valid for the whole sample in

X =G−1
�
F−11 Y1

F−1N YN

�

where F−1i and G−1 are subject and group reduction matrices [as determined
by principal component analysis (PCA)], respectively, and Yi is the data
matrix. Furthermore, subject-specific time courses of each component are
available via back reconstruction, for which the partitioned data reduction
matrices are projected to aggregate component matrix [components in
rows; used back reconstruction algorithm GICA I (16, 17, 18)]. This is called
PCA-based back reconstruction and was shown to be highly accurate com-
pared with other approaches to back reconstruction (17). Because task-
related roles are switched after the first half of the paradigm, subject data
were entered with task blocks (block A and block B) as separate sessions to

enable us to model the task role-specific differences. For GICA, the di-
mensionality of the data (i.e., number of components to be estimated) can
be assessed, among other estimation methods, by computing the minimum
description length for each subject’s dataset (16); this was found to be 16 in
both reported data sets. To assure a reliable estimation of components, GICA
was repeated and estimations were compared by using ICASSO software (17,
45) (research.ics.aalto.fi/ica/icasso/). Component spatial maps were scaled to
percent signal change for more convenient comparison and interpretation,
and all other analysis settings were applied as commonly reported for the
procedure (16, 19). Components were assigned consecutive numbers for
identification, although the assigned numbers are arbitrary because com-
ponents are not sorted in any way by ICA.

Notably, the group-based ICA approach described here results in spatial
components for the entire sample, which allows for comparisons of individual
temporal data. An interesting alternative approach for future studies is dyad-
based blind source separation. Although the comparability of components
across dyads may be limited, this approach has the prospect of informing the
field on differences in interdyadic neural processing.

Analysis Step B: Temporal Component Selection. Multiple regression analysis
was performed on the task design as a dependent measure using the subject-
specific mean temporal data for each component as explanatory variables. This
results in a subject-specific beta value for INT as well as NoINT, both separate for
two task blocks. Beta values from the discovery study were found to be un-
correlated for different blocks (coding for task roles) in all but three components,
pointing to role-specific brain activity within subjects (mean Spearman rank
correlation of blocks A and B r = 0.02). A stable correlation across phases was
exclusively found for component 3, that is, a component covering solely the
primary visual cortex and processing relatively similar stimuli sets across subjects,
trials, and task roles (INT were correlated across blocks in a component cap-
turing movement artifacts; NoINT were correlated in a component covering the
cuneus and inferior parts of the precuneus across the parietal−occipital fissure).

Next, standardized (z-scored) beta values for each subject were entered in a
repeatedmeasures ANOVAwith task phase and block as within-subject factors to
exclude all components not showing a significantly higher association with INT
over NoINT, while accounting for additional within-subject dependency (for each
subject, four parameterswere estimated: two phases in block A and twophases in
blockB). This procedure, applied todiscovery studydata, identified10 components
showing a significant difference in the degree of association with defined
task phases. Further inspection of the remaining component set revealed that
one component was significantly more highly associated with NoINT and was
therefore excluded from the analysis, while 3 of the 10 associated compo-
nents did exhibit a negative beta weight for INT (Table S1). Considering a
negative beta weight as a measure of deactivation during the respective task
phase, we believe these components can be potentially meaningful for certain
hypotheses (i.e., deactivation of an inhibitory control region under task demand
might indicate disinhibition within networks). However, aiming to identify infor-
mation flow across brains that would appear as an active representation at the
neural level, deactivated brain regions were not considered for further analyses.

Similar results were obtained for the replication sample data. Here, a
significant difference in temporal association with task phases was found for
12 out of 16 components. Furthermore, one component was significantly
more highly associated with NoINT, and negative beta values for INT were
observed for five components of this set, resulting in six components to be
considered for spatial component selection (Table S1).

Analysis Step C: Lag Estimation. Investigating the extent of neural coupling
within simultaneously scanned subjects, component time courses were back-
reconstructed to obtain the individual subject’s time course corresponding to
each spatial map. Cross-correlation was computed as a measure of neural
coupling, in which each pair’s time courses in a given COI pair in the dis-
covery sample data were correlated (e.g., COI1 from sender and COI2 from
receiver); this was done repeatedly across all possible combinations of COIs
(COI1 through COI6 from sender and COI1 through COI6 from receiver, 36
component pairs in total).

As previous reports suggest, neural coupling computationsmay need to take
into account a temporal delay required for the flow of information between
brain systems (11, 20, 21). For this, the receiver’s time course was repeatedly
shifted by one TR (one lag) forward in time, and correlated again, until, after
nine lag shifts, the end of one trial was reached. Time series were shifted
unidirectionally only, corresponding to the direction of information flow, with
the sender’s time course leading the receiver’s time course (i.e., considering the
sender’s time course fixed, the receiver’s time course was shifted forward in
time). Because task design included a role switch after the first half of the
experiment, lag estimation was computed twice for each couple (block A with
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subject Ni as sender, block B with subject Ni as receiver). Full lag estimated data
therefore consisted of neural coupling indices for each couple, at each lag, and
in each of the investigated COI pairs.

Analysis Step D: Permutation-Based Tests. For each COI, we used a non-
parametric permutation-based approach to compare the coupling indices of
really interacting pairs (i.e., interacting individuals that were scanned si-
multaneously, e.g., the sender and receiver of pair A) to those of randomly
composed nonpairs. The nonpairs were created by matching individuals to
partners other those they had performed the task with (e.g., by matching the
sender of pair B to the receiver of pair C).

For the discovery sample, the reference distribution of nonpairs was
created by 1,000 repetitions of the artificial sender/receiver pair assignments.
During each repetition, a random sample of 26 nonpairs (=̂ 13 × 2 real pairs)
was drawn from the distribution of permutated nonpairs, and lag estima-
tion was conducted as described above. For the replication sample, permu-
tation was repeated 10,000 times, and random samples of 50 nonpairs (=̂ 25 ×
2 real pairs) were drawn. Next, the frequency of correlationNON-PAIRS >
correlationREAL PAIRS was determined (i.e., the ratio of (i) the number of cases
in which real pairs did not show higher neural coupling than nonpairs and
(ii) the number of total observations, i.e., 1,000 or 10,000). This frequency
represents the empirical P value testing whether neural coupling occurred
that is unique to real pairs. To determine the time window of neural
coupling, this procedure was repeated for every lag within the COI pair
until no significant difference of coupling indices between real pairs and

nonpairs was observed anymore. Lastly, results were FDR-corrected for
multiple comparisons.

Validation: Social Network Parameters. Correlation between coupling indices
and SNI data were computed. Here, we found the complexity of the social net-
work to be associated with the magnitude of neural coupling a subject displays
during interaction (r = 0.24, P = 0.04). This relationship was not observed in
nonpairs (all r < 0.03, all P > 0.05). Because the neural coupling index states a
characteristic of the dyad, individual measures of social network complexity were
averaged within each pair, forming dyadic social network complexity estimates
(computed for all pairs for which both respective network data were available;
n = 70 pairs or 35 pairs). For validation, mean social network complexity data
were entered into a repeated measures ANOVA model, which included the
neural coupling index as dependent variable, task block (A/B) as the within-
subject factor, the mean social network complexity as independent variable, and
within-pair SNI difference as a nuisance covariate.
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